High Performance Liquid Chromatography (HPLC)

Principal and working of HPLC: The separation principle of HPLC is based on the distribution of an analyte between a mobile phase and a stationary phase. Different constituents of a sample are eluted at different times, resulting in the separation of the sample ingredients.

Figure 1 HPLC in the laboratory

Applications	of HPLC in t	he analysis o	of various food	<i>constituents</i>
--------------	--------------	---------------	-----------------	---------------------

Food Constituents	Examples	Separation mode	Method of detection
Mono & oligosaccharides	Fructose, Raffinose, sucrose, sorbitol	Ion exchange; normal or reversed phase	Electrochemical; refractive index; post column analysis
Vitamins	Fat-soluble vitamins, such as vitamins E, D, and A, and water-soluble vitamins, such as vitamins C, B6, B2, B1, and B12	Normal or reversed phase	Fluorescence; electrochemical; UV
Amino acids	Isoleucine, Leucine, Lysine, Threonine, Histidine, Valine, Methionine, Phenylalanine, Tryptophan, and Tyrosine	Ion exchange; reversed phase	Post- or pre-column derivatization
Protein separation	Bovine serum albumin, Insulin	Ion exchange, reversed- phase, affinity, hydrophobic interaction	UV
Phenolics	Rutin, Gallic acid, Quercetin	Reversed phase	UV
Pesticides	DDT, Urea, Phoshpine	Normal or reversed phase	UV; fluorescence; mass spectrometry
Mycotoxins	aflatoxins, ochratoxin A, patulin, fumonisins, zearalenone and nivalenol/deoxynivalenol	Reversed phase; Immuno- affinity	UV; fluorescence

Other applications

- I. Applications of HPLC in pharmaceuticals
 - ➤ The analysis of pharmaceutical drug formulations using HPLC is both qualitative and quantitative
 - ➢ For the separation of complex molecules, high-performance liquid chromatography (HPLC) is used.
 - High-performance liquid chromatography is used to purify massive amounts of substances.
 - ➤ It is utilized to test the purified compounds for the presence of minute contaminants.
 - > HPLC is utilized in the analysis of pharmaceutical products in order to determine their bioavailability.

II. Applications of HPLC in environmental science

- > HPLC is utilized in the water quality analysis.
- > To detect trace amounts of pollutants like PCBs in pesticides and used oil.

III. Applications of HPLC in forensic science

HPLC is used to detect drug traces in urine, from doping agents to opioids, cocaine, LSD, cannabis, and ketamine.

IV. Applications of HPLC in medical diagnosis

High-performance liquid chromatography is also useful for analyzing nutrients in blood and other medical samples.